Pandas - not just for data scientists

Uzi Halaby Senerman | Chief Architect @ BlueVine

OBlueVine

This talk is not...

Daila Wrangling with Pandas, NPy, and IPython

- for data scientists (but you're

welcome to stay :-)) Python for
- atutorial Data Analysis

e Pandas tutorial by Brandon Rhodes from PyCon 2015:
https://www.youtube.com/watch?v=5JnMutdy6Fw
e Python for Data Analysis by Wes McKinney

O'REILLY" Wes McKinney

https://www.youtube.com/watch?v=5JnMutdy6Fw
https://www.youtube.com/watch?v=5JnMutdy6Fw
http://shop.oreilly.com/product/0636920023784.do#tab_04_2

This talk...

- is for Python developers
- will expose you to a very powerful tool that can be very
useful from research phase to production

pandas |l

yit =B’z + p; + € I l

W

e FinTech - Flexible business lines of credit and invoice factoring
e Reliable and fast risk assessment for potential customers

e Data science:
o pandas as a major tool
o Machine learning models
o Starting to cope with “Big Data” problems

Python - greatness that comes with a price

An interface between the human developer and the machine.

Probably the best general purpose Not always the best option
programming language :-) (greatness comes with a price)

Specialized Python feature

For/list comprehensions

list all = range(100000000)
filtered list = []
for x in list all:

if x > 50000000: list all = range(l00000000)
filtered list.append(x) filtered list = [x for x in list all if x > 50000000
CPU times: user 13.2 s, sys: 2.1 s CPU times: user 7.74 s, sys: 3.26 s, total: 11 s

Wall time: Wall time: |11.6 =1 |

This is idiomatic Python and you should always prefer list comprehension when it's applicable

Leverage the advantages of C (with the greatness of Python)

e Implement performance-critical parts of the code in C (with
static typing)

o “If you want python fast, fix dynamic not interpreted”
Brandon Rhodes: The Day of the EXE Is Upon Us - PyCon 2014

e "Python as a glue language’

e Many libraries, including some of the standard libraries
in CPython

e Including NumPy & pandas...

NumPy & pandas

e pandas is highly optimized for performance, with critical code
paths written in Cython or C

e NumPy array / pandas Series and DataFrame
o Fixed size at creation
o Elements are the same data type

o ufuncs - vectorized version of many useful operations
e Highly flexible and powerful - everything you can do with a DB,

Excel or R Data Frames
L |MM

’Nump}, pal ndas

B'ey + i + &

How can it improve performance

Numpy Array

PyObject_HEAD

data

Python List

PyObject_HEAD

dimensions

length

strides

items

0x310718

O |~ | W |P

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

0x310748

0x310730

0x310760

0x310700

0x3106b8

0x3106d0

0x3106e8

Entire Eco System

@ python’

8 Numpy

9 ScnPy % matplotlib

IPython

QM@W pandas u; a sl
‘p l:Ithon SM l f =Modlels .ﬁl

@ SiKizimage eh'“m .P.____-_-_-_-_::--‘L NetworkX

http://certik.github.io/talk-scipy-india2013/talk/images/python_ecosystem.png

B s
" w“--.

SymPy

— jupyter

How much faster is it?

l = list(range(100000000))
a = np.array(1l)

Without pandas With pandas

sum(1l) a.sum()

CPU times: user 1.32 s CPU times: user 98.6 ms

filtered=[x for x in 1 if x>0.5] filtered = a[a > 0.5]

CPU times: user 13.5 s, sys: 4.57 s CPU times: user 467 ms

[%¥*¥999 for x in 1] a*999

CPU times: user 8.17 s CPU"tl¢ES= user 274 ms

Results in production - great performance boost

e Sync process that runs every several minutes
e Comparing hundreds of thousands of values
e External API vs. Django ORM

-

e X15 faster when moving to pandas
Cleaner code

Results in production - WOW

e Calculating summaries for aggregated data
e Very complicated business logic

-

e X1900 faster when moving to pandas

e Much cleaner code

e Optimization for the non-pandas code is doable
(it will probably won’t be as good as with pandas),
but the price would be MUCH more complicated code

The pandas way

Work with pandas the way it was designed to be used
ufunc (e.g. sum()) are better than apply()

apply() is better than iterating over a Series/DataFrame
(Iterating over a Series/DataFrame is better than iterating
over a Python list/dict)

And don't always follow the most intuitive way...

Twisting your mind

Date

2015-01-02

2015-02-02

2015-01-12

2015-02-22

2015-03-08

-~

2015-02-22

2015-01-19

2015-01-17

50,000 rows

13 categories

From Date | To Date Category to Assign
2015-01-02 | 2015-01-21 | A
2015-01-22 | 2015-02-27 | B
2015-02-28 | 2015-03-15 | C
2015-03-15 | 2015-04-01 | D

Twisting your mind

e Straight forward approach:
df[“category”] = df.apply(get_category)

e The efficient approach:
for from_date, to_date, category in periods:
df.loc[(df[' date] >= from_date) &
(df[date’] < to_date), ‘category’] = category

e X2340 faster (26.1ms vs. 61 seconds)!!!

Data Exploration with Jupyter & pandas

Very powerful tools to explore the data

Run the same notebook in multiple environments
(production, staging)

Run the same notebook in different times

Share notebook with other team members

Or share only the results (HTML, PDF)

Use the notebook as starting point for your production code

Learn pandas (and start using Jupyter)!

e Explore your data more effectively
e Optimize your code (and make it cleaner):
o Data analysis
o Sync processes
o Reports / Exports
e And when you use pandas - remember that changing your point of
view can lead you to more efficient implementation

Thank you!

uzi@bluevine.com

UK

Specialized Python feature

Slots (you shouldn’t use this in your code)

class Test:

__Blota = ['a', 'B', 'e']
class Test:
def init (self, a, b, c): def init (self, a, b, c):
self.a = a self.a = a
self.b = b self.b = b
self.c = ¢ self.c = ¢
for i in range(10000000): for i in range(10000000):
Test(i,i,1) Test(i,i,i)
CPU times: user 6.57 s, sys: 40.1 ms CPU times: user 5.41 s, sys: 33.8 ms

Wall time: Wall time:

